Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Multifunctional fibers with high mechanical strength enable advanced applications of smart textiles, robotics, and biomedicine. Herein, we reported a one-step degumming method to fabricate strong, stiff, and humidity-responsive smart cellulosic fibers from abundant natural grass. The facile process involves partially removing lignin and hemicellulose functioning as glue in grass, which leads to the separation of vessels, parenchymal cells, and cellulosic fibers, where cellulosic fibers are manufactured at kilogram scale. The resulting fibers show dense and unidirectional fibril structure at both micro- and nano-scales, which demonstrate high tensile strength of ∼0.9 GPa and Young's modulus of 72 GPa, being 13- and 14-times higher than original grass. Inspired by stretchable plant tendrils, we developed a humidity-responsive actuator by engineering cellulosic fibers into the spring-like structures, presenting superior response rate and lifting capability. These strong and smart cellulosic fibers can be manufactured at large scale with low cost, representing promising a fiber material derived from renewable and sustainable biomass.more » « less
-
Abstract Lychee is an exotic tropical fruit with a distinct flavor. The genome of cultivar ‘Feizixiao’ was assembled into 15 pseudochromosomes, totaling ~470 Mb. High heterozygosity (2.27%) resulted in two complete haplotypic assemblies. A total of 13,517 allelic genes (42.4%) were differentially expressed in diverse tissues. Analyses of 72 resequenced lychee accessions revealed two independent domestication events. The extremely early maturing cultivars preferentially aligned to one haplotype were domesticated from a wild population in Yunnan, whereas the late-maturing cultivars that mapped mostly to the second haplotype were domesticated independently from a wild population in Hainan. Early maturing cultivars were probably developed in Guangdong via hybridization between extremely early maturing cultivar and late-maturing cultivar individuals. Variable deletions of a 3.7 kb region encompassed by a pair ofCONSTANS-like genes probably regulate fruit maturation differences among lychee cultivars. These genomic resources provide insights into the natural history of lychee domestication and will accelerate the improvement of lychee and related crops.more » « less
-
Abstract Nanoparticles supported on carbonaceous substrates are promising electrocatalysts. However, achieving good stability for the electrocatalysts during long‐term operations while maintaining high activity remains a grand challenge. Herein, a highly stable and active electrocatalyst featuring high‐entropy oxide (HEO) nanoparticles uniformly dispersed on commercial carbon black is reported, which is synthesized via rapid high‐temperature heating (≈1 s, 1400 K). Notably, the HEO nanoparticles with a record‐high entropy are composed of ten metal elements (i.e., Hf, Zr, La, V, Ce, Ti, Nd, Gd, Y, and Pd). The rapid high‐temperature synthesis can tailor structural stability and avoid nanoparticle detachment or agglomeration. Meanwhile, the high‐entropy design can enhance chemical stability to prevent elemental segregation. Using oxygen reduction reaction as a model, the 10‐element HEO exhibits good activity and greatly enhances stability (i.e., 92% and 86% retention after 12 and 100 h, respectively) compared to the commercial Pd/C electrocatalyst (i.e., 76% retention after 12 h). This superior performance is attributed to the high‐entropy compositional design and synthetic approach, which offers an entropy stabilization effect and strong interfacial bonding between the nanoparticles and carbon substrate. The approach promises a viable route toward synthesizing carbon‐supported high‐entropy electrocatalysts with good stability and high activity for various applications.more » « less
An official website of the United States government
